"Needed: A Theory of Total Factor Productivity"

1. Introduction

1. Introduction, *continued*

•

 \bullet

•

•

●

2. Index Number Approach

$$- | y_t, p_t$$

 $- | x_{K,t}, w_{K,t}$
 $- | x_{L,t}, w_{L,t}$

•

•

2. Index Number Approach, continued

A state

2. Index Number Approach, continued

•

•

3. Production function approach

- ¥ TFPcanalsobedefinedwith reference a production function
- ¥ This actually leads to for four interpretations of TFP

Let $\mu_t ! \ln y_t / t$ be the instantaneous rate of technological change; we then have:

(8)
$$\frac{\partial f(\cdot)}{\partial t} = \mu_t y_t$$

Following Diewert and Morrison (1986), we define the following index of TFP:

(10)
$$T_{t,t!1} = \frac{f(x_{K,t!1}, x_{L,t!1}, t)}{f(x_{K,t!1}, x_{L,t!1}, t!1)} = \frac{f(x_{K,t}, x_{L,t}, t)}{f(x_{K,t}, t!1)}$$

3. Production function approach,

●

•

4. Impact of TFP on factor rental prices

 ϕ_{KT}

•

 \bullet

 \bullet

4. Impact of TFP on factor rental prices, *continued*

4. Impact of TFP on factor rental prices, *continued*["]

4. Impact of TFP on factor rental prices, continued"

4. Impact of TFP on factor rental prices, continued

- ¥ As long as the technology is progressing, the first term on the right hand side is positive
- ¥ If ! KT is positive, technological change is anti-labor biased
- ¥ It might even be that $\mu_{KT}/s_{L,t} > \mu_t$, in which case technological change would be ultra anti-labor biased: technological change would then lead to an actual fall in the wage rateÉ
- É even though technological progress would unambiguously increase average labor productivity

4. Impact of TFP on factor rental prices, continued

5. Disembodied factor augmenting technological change

5. Disembodied factor augmenting technological change, *continued*

5. Disembodied factor augmenting technological change, continued

5. Disembodied factor augmenting technological change, continued

5. Disembodied factor augmenting technological change,

Table 1

Parameter estimates

6. The decomposition of TFP between labor and capital

6. The decomposition of TFP between labor and capital, continued

Figure 1

Decomposition of TFP

(factor augmenting technological change)

8. A parsimonious and yet flexible model

8. A parsimonious and yet flexible model, *continued*!

It twee out that the model of constign (62) is series but to (11), since there is a const a more than TTERES TERC AND TRANSFORMED AND ADDRESS OF A DECEMPTOR OF A DECEMPTOR ADDRESS OF ADDR $-(6\bar{A}) = \beta_{\mathcal{F}} \circ \beta_{\mathcal{K}} \mu_{\mathcal{K}} + (0 + \beta_{\mathcal{K}}) \mu_{\mathcal{K}}$ (65) $\phi_{\kappa\tau} = \phi_{\kappa\kappa} (\mu_{\kappa} - \mu_{I})$ $(66) \quad \phi_{\overline{y}} = \phi_{\overline{y}} (\mu_{\overline{y}} - \mu_{\overline{y}})^2 + \lambda \dots$ නයේ මහත් සඳහනය සංකාර කර්ග පැවිතුරුවට පොල රජ වර් වර්ගම් දින්දා වල් ඉන්න සිදු දිලිල් නිර්ධාර්ධාය atom a sesse 1 K. TV. (68) $\mu_L = \beta_T - \beta_K \frac{\phi_{KT}}{\phi_{KK}}$ (69) $\lambda = \phi_{TT} - \frac{\phi_{KT}^2}{\phi_{FF}}$

8. A parsimonious and yet flexible model, continued"

\$\$"

ition of TFP Decompos 🐈 ហែនន៍សតវត៌នេធំអនារងាយ លោក ហេដាយក្រ (TRA Jamilah 1.4 1.3 Sec. 2 Capital Lohos 1 1.1 CONTRACTOR OF STATES AND A STATES 0.9 1970 1975 1980 1985 1990 1995 2000

9. The impact of technological change on factor rental prices reexamined, *continued*["]

•

•

 \bullet

 \bullet

9. The impact of technological change on factor rental prices reexamined, *continued*["]

•

 \bullet

9. The impact of technological change on factor rental prices reexamined, *continued*

That can be the inverse viage leader in the former dense dense.

$$(73) \quad \varepsilon_{ij} = \frac{\partial \ln \widetilde{w}_i(\widetilde{x}_K, \widetilde{x}_L, p)}{\partial \ln \widetilde{x}}, \quad i, j \in \{K, L\}$$
For a constraint of the second state of th

(76) $\varepsilon_{LK} = \psi_{KL} s_K$

9. The impact of technological change on factor rental prices reexamined, continued"

9. The impact of technological change on factor rental prices reexamined, *continued*["]

•

 \bullet

Q

9. The impact of technological change on factor rental prices reexamined, *continued*["]

•

10. Generalization to an arbitrary number of inputs, *continued*!

10. Generalization to an arbitrary number of inputs, continued"

11. Conclusions

11. Conclusionscontinued

- ¥ We have shown that in the case of a TP-flexTbbenslog production function TFP can always be interpreted as the outcome of disembodied, factor augmenting technological change
- ¥ Indeed, we have proposed a convenient way to derive the factor-augmenting rates of technological change from the estimates of such Translogproduction function
- ¥ We have found that technological change is alrhastod neutral in the case of the United States, so that TFP is overwhelmingly explained by labor

11. Conclusions, *continued*

•

Thank you for your attention!

Growth factors 1970-2001

Quantity of capital services:!	"#	2.25706
!'''#\$‱%' ()*(+#,)-(. /-O&1/.2!	"\$	1.70513
3-&1/()*()''%4''%2!	%	3.76623
! ''#\$\&%' ()*() ''%4''%2!	&	2.52563
3-&1/()*(+#,)-(./-0&1/.2(′\$	5.50201
5)%#+(*#1%)-(4-)6''1‰0&%′2!	(1.37071
Capital component of TFP:	T_K	1.01850
Labor component of TFP:	T_L	1.34581
Capital efficiency:	! #	1.06789
Labor efficiency:	! \$	1.50832
7#,)-(.8#-/2!)\$	0.98628
Output per unit of labor:	! ! !!! _L	1.48119