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Figure 1.2: Nanumaga Island, Tuvalu 

The investigation site 
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2 Model arrangement, design and operation 

2.1 Modelling objeb5( )-7(ob)4(je)-7(b5( )m)h3s2 0 r5
[(des)-t
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Figure 2.4: Model roughness elements on reef platform (top) and upper fore-reef 
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2.4 Measurements and analysis 

2.4.1 Wave and water level measurements 

Wave conditions and water levels were measured continuously throughout all tests at several locations 

within the flume, namely just offshore of the reef and at six other individual locations across the reef 

profile. Measurements were collected using high-accuracy capacitance wave gauges sampled at a 

frequency of 5 Hz (real world scale). Figure 2.5 shows the layout of wave gauges within the flume. The 

offshore wave conditions measured at the -25 m MSL location were collected using an array of three 

carefully spaced wave gauges, which enabled separation of incident and reflected wave time series 

using the least squares method of Mansard and Funke (1980). This was particularly important during 

the wave climate calibration process, to ensure that the incident wave climate matched the target wave 

climate for each test condition, without the interference of wave reflections. 
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Figure 2.5
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2.4.2 Runup/Overtopping measurements 

Runup levels were measured continuously throughout all tests using a 2D LiDAR mounted over the 

beach, as well as through visual analysis using an overhead camera. While the intention was to process 

the runup data to determine the 2% runup level, extreme wave runups exceeded the crest of the beach 

berm in all tests. Wave overtopping of the beach berm crest was also measured for all tests, and this 

parameter was used instead as the measure of inundation intensity. Figure 2.6 shows the arrangement 

of instrumentation for measuring runup/overtopping in the wave flume. 

 

Average wave overtopping rates, Qave (L/s/m) were measured by recording the total volume of water to 

overtop the beach berm crest during a full test, then dividing this by the test duration and normalising it 

to the beach berm crest length of the model. Peak wave overtopping volumes, Vmax (L/m) were also 

estimated by measuring the volume of water to overtop the beach berm crest during individual large 

wave overtopping occurrences. Both Qave and Vmax are widely used within coastal engineering literature 

as a measure of wave overtopping intensity and hazard. Measured values from the Nanumaga physical 

model tests are discussed relative to guideline values from literature in Section 4.5 of the report. 

 

 

Figure 2.6: Layout of wave runup/overtopping instrumentation 

 

 

Beach slope and storm berm 

Reef flat 
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Table 3.2 Target test conditions 

Test Condition 
Hs (offshore) 

(m) 

Hs (@-25 m MSL)1 

(m) 

Tp 

(s) 

Water Level2  

(m MSL) 

TC Pam Peak 5.3 5.1 15.6 0.39 

100 Year ARI 5.5 5.2 14.3 0.67 

250 Year ARI 6.0 5.7 14.8 0.65 

250 Year ARI (2050)3 6.0 5.7 14.8 0.97 

250 Year ARI (2100)3 6.0 5.7 14.8 1.49 

 

1. Value determined by wave transformation calculation using SBEACH 

2. Water level includes tide plus mean sea level anomaly (tide + MSLA) 

3. Values for RCP8.5 adopted from SPC (2021)  
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4 Modelling results 

4.1 Stage 1: Testing with high beach crest level 

During Stage 1 of the testing program, measurements focussed on defining wave dissipation, wave 

setup and wave runup/overtopping for each of the five wave and water level conditions. Testing was 

undertaken with the beach profile extending up to a crest elevation of 7.2 m MSL. Test results for wave 

measurements are shown in Table 4.1 and Figure 4.1. (see Figure 2.5 for locations of reef-top wave 

measurement locations R1 to R6). Test results for water levels, infragravity waves and overtopping are 

shown in Table 4.2, Figure 4.2 and Figure 4.4.  

 

Table 4.1 Measured wave conditions for Stage 1  

(7.2 m MSL beach berm crest level)  

Test 

Condition 

Tide + 

MSLA 

(m MSL) 

Tp,25 

(s) 

Hs,25 
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Figure 4.1: Variation in Hs across reef profile for Stage 1 testing 

 

 

Figure 4.2: Variation in water levels across reef profile for Stage 1 testing 
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Figure 4.3: Wave breaking on fore-reef slope and dissipating across reef platform 
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Wave runup during large wave/infragravity occurrences was found to exceed the crest height of the 

beach berm at 7.2 m MSL for all test conditions, resulting in wave inundation/overtopping. The average 

wave overtopping rate measured 12.5 m landward of the crest of the beach berm was found to be 

smallest for the 100 Year ARI test condition with just over 1 L/s/m measured, increasing to just over 

4 L/s/m for the 250 year ARI test condition. Sea level rise was found to further increase the measured 

overtopping rates, with over 9 L/s/m measured for the 250 Year ARI (2100) test scenario. This result 

clearly demonstrates the impact that sea level rise could have on inundation rates during extreme storm 

events, with measured wave overtopping for the 2100 scenario more than double the measured rate for 

present day sea levels.  

 

 

Figure 4.4: Average wave overtopping rates for Stage 1 testing  

(7.2 m MSL beach berm crest level)
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Figure 4.5: Influence of wave period on reef-top wave heights 

 

 

Figure 4.6: Influence of wave period on reef-top water levels 
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For each of the four wave period sensitivity tests, the wave height measured nearest the shoreline was 
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Table 4.4 M
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4.2.2 Sensitivity testing with for wave spectrum and groupiness 

Three separate tests were completed for wave conditions having the same spectral peak wave period 

(Tp) and significant wave height (





-Driven Inundation Assessment, Tuvalu: Physical Modelling Report, WRL TR 202 1/1 9,  A u g u s t 2 02 1 2 5  F i g u r e  4.1 0:  I n f l u e n c e  o f  s p e c t r a l  s h a p e  a n d  g r o u p i n e s s  o n  r e e f-t o p  w a F o o  l e v e l s  F i g u r e  4.1 1:  I n f l u e n c e  o f  s p e c t r a l  s h a p e  a n d  g r o u p i n e s s  o n  w a v e  o v e r t o p p i n g  r a t e s � J= 1 . 0 ,  � N= 0 . 4 4,  M e a n  W L   � J=3.3,  � N= 0 .5 2 ,  M e a n  W L   � J=6. 0 ,  � N= 0 .6 1 ,  M e a n  W L   � J= 1 . 0 ,  � N= 0 . 4 4,  2 %  W L   � J=3.3,  � N= 0 .5 2 ,  2 %  W L   � J=6. 0 ,  � N= 0 .6 1 ,  2 %  W L   � J= 1 . 0 ,  � N= 0 . 4 4  � J= 3 . 3 ,  � N= 0 . 5 2  � J= 6 . 0 ,  � N= 0 . 6 1 







Nanumaga Wave-Driven Inundation Assessment, Tuvalu: Physical Modelling Report, WRL TR 2021/19, August 2021 

28 

 

Figure 4.12: Variation in Hs across reef profile for Stage 3 testing
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4.4 Stage 4: Testing with BTB installed 

Stage 





Nanumaga Wave-Driven Inundation Assessment, Tuvalu: Physical Modelling Report, WRL TR 2021/19, August 2021 

33 

 

Figure 4.17: Variation in Hs across reef profile for Stage 4 testing 

 

 

Figure 4.18: Variation in water level across reef profile for Stage 4 testing 
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Figure 4.19: Average wave overtopping rates for Stage 4 testing  

(6.3 m MSL beach berm crest level, with additional BTB installed to crest level of 8.1 m MSL) 
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https://knowledge.aidr.org.au/media/3518/adr-guideline-7-3.pdf
http://www.overtopping-manual.com/assets/downloads/EurOtop_II_2018_Final_version.pdf
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5 Conclusions 

SPC is carrying out an assessment of wave-driven coastal inundation hazards for the islands of 

Nanumaga, Nanumea and Funafuti in Tuvalu. WRL was engaged to conduct a scale physical modelling 

assessment of wave processes, runup and overtopping hazards for Nanumaga island, to support SPCôs 

investigation. The key objectives of the physical modelling study included analysis of the following 

parameters for a range of extreme wave and water level scenarios: 

 

• Wave characteristics and transformation as waves cross the reef profile 

• Reef-top water levels, including sustained wave setup and low frequency components 

• Wave runup/inundation levels at the beach 

• Reduction in wave overtopping achieved by Berm-Top-Barrier coastal protection structures 

 

A testing program comprising 20 separate test runs was completed using a 1:25 scale, 2D cross-shore 

reef profile model for the western coast of Nanumaga. The tests investigated five separate wave/water 

level scenarios: 

 

1. TC Pam:                      Hs = 5.3m, Tp = 15.6s, Tide + MSLA = 0.39m MSL 

2. 100 Year ARI :             Hs = 5.5m, T
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overtopping rates by a factor of 7 to 14, and for present day sea levels, the resulting overtopping rates 

were reduced to be at the safe limit during the 100 year ARI test condition. For the TC Pam and 250 

year ARI conditions with present day sea levels, overtopping rates were measured to be slightly above 

guideline values.   
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