MATHEMATICS ENRICHMENT CLUB. Problem Sheet 10, July 21, 2015¹

- 1. Find the sum of all *n*-digits long numbers formed by 1/2/3/.../n. For example, if n = 3 then the sum of all 3-digit long numbers is 123 + 132 + 213 + 231 + 312 + 321 = 1332.
- 2. Evaluate $\stackrel{P_4}{\overline{2}}$ $\stackrel{P_8}{\overline{4}}$ $\stackrel{P_6}{\overline{8}}$ $\stackrel{P_2}{\overline{32}}$ $\stackrel{P_4}{\overline{16}}$ $\stackrel{P_4}{\overline{32}}$::::
- 3. Several positive integers are written on a blackboard. The sum of any two of them is some power of two (for example, 2, 4, 8,...). What is the maximal possible number of di erent integers on the blackboard?
- 4. Bob is building two roads to connect the points A and B_p For any real number x, the two roads must have a length ratio of $(x + 4)^2 + 4$ to $(x 4)^2 + 16$. Bob picks x then claims his design gives the shortest combine length of the two roads, what must this combine length be?

- 5. For a triangle *4ABC*, *M* is the midpoint of the side *AB* and *L* is some point along the side *BC*. Let *O* be the point of intersection between the lines *LA* and *MC*, and let *K* be the point of intersection between *LA* and the line passing through *M*, parallel to *BC*; see above
 - (a) Show that the triangles 4KMO and 4OLC are similar.
 - (b) Suppose the length LA is twice as long as MC, and $\backslash OLC = 45$. Prove LA is perpendicular to MC.
- 6. Consider the polynomial $p(x) = x^4 + 37x^3 + 71x^2 + 18x + 3$. If a; b; c and d are roots of p(x), nd a polynomial whose roots are $\frac{abc}{d}; \frac{acd}{b}; \frac{abd}{c}$ and $\frac{bcd}{a}$.

¹Some problems from *Tournament of Towns in Toronto*.

Senior Questions

The following questions concerns the irrationality of a. Recall that a number is irrational if it can not be written as $\frac{a}{b}$, where a and b are positive integers. We will study a function de ned by

$$f(x) = \frac{x^n(a bx)^n}{n!};$$

where *n* is some positive integer.

- 1. Let $f^{(k)}(x)$ denote the k^{th} derivative of f, where k = 0, 1, 2, ... Show that for each k
 - (a) $f^{(k)}(0)$ is an integer.
 - (b) $f^{(k)}(0) = (-1)^k f^{(k)}(-)$.
- 2. Let G(x) = f(x) $f^{(2)}(x)$ $f^{(4)}(x) + f^{(6)}(x)$ $\cdots + (1)^n f^{(2n+2)}(x)$.
 - (a) Show that $f(x) = G(x) + G^{(2)}(x)$.
 - (b) By considering the function $G^{(1)}\sin(x) = G(x)\cos(x)$ and the result of part (a), show that $\int_{0}^{1} f(x)\sin(x) dx = G(0) = G(0)$.

3J 0