MATHEMATICS ENRICHMENT CLUB. Solution Sheet 4, May 22, 2016 1. Let $x = \sqrt[3]{6 + \sqrt[3]{6 + \sqrt[3]{6 + \sqrt[3]{6 + \sqrt[3]{6 + \frac{3}{6 + \frac{$

That is,

 $x = d_1 + 10$ $d_2 + : 11.05$ 0 Td [(1))]TJ/F22 11.9552 Tf 12.157 0 Td [()]TJ/

$$3 \quad x \quad \stackrel{p}{\xrightarrow{}} x + 1 \quad ^{2}$$

= (3 x)
$$2^{p} \frac{2^{p}}{(3 x)(x + 1)} + (x + 1)$$

= 4
$$2^{p} \frac{3^{p}}{(3 x)(x + 1)};$$

which implies

$$2^{p} \frac{(3 - x)(x + 1)}{4(3 - x)(x + 1)} < 3$$
$$4(3 - x)(x + 1) < 9$$
$$4x^{2} + 8x + 3 < 0$$

Solving the above quadratic inequality and recalling that 1 x 3 gives 1 x < $1 + \frac{1}{2}^{7} \overline{7}$.

4. Consider g(x) := f(x) 1. We have

$$g(xy) = f(xy)$$
 $1 = yf(x) + xf(y)$ $x = yg(x) + xg(y)$:

Next, set $h(x) = \frac{g(x)}{x}$ then

$$h(xy) = \frac{g(xy)}{xy} = \frac{g(x)}{x} + \frac{g(y)}{y} = h(x) + h(y)$$

Hence, $h(x) = \ln(x)$. Thus, $f(x) = x \ln(x) + 1$.

- 5. (a) Let x and y be the two natural numbers. We wish to nd the largest value of $xy = x(2016 \ x)$, the concaved down parabola with roots 0 and 2016. The maximum is at the turning point x = 1008. So the greatest product is $xy = 1008^2$.
 - (b) Let $x_1 \quad x_2 \quad ::: \quad x_n$ be the *n* natural numbers. If any of the natural numbers is 1, then $x_1 = 1$ and the product $x_1 x_2 ::: x_n$ is not maximum, because we can add x_1 to any one of the other natural numbers and always end up with a greater product.

Now, suppose that one of natural number say x_1 is greater than 3, then we can split x_1 into $x_1 = 2$ and 2. The result of the product is

2
$$(x_1 \quad 2) \quad x_2 x_3 x_4 \ldots x_n \quad x_1 x_2 \ldots x_n$$

Therefore, the product $x_1x_2 ::: x_n$ is greatest when each $x_1; x_2; ::: x_n$ either 2 or 3.

Finally, if three or more of the natural number are 2's, then we can combine them into two 3's, then product will be greater than it was before since $2 \quad 2 \quad 2 < 3 \quad 3$. Hence, the to obtain the greatest product of x_1, x_2, \ldots, x_n when $x_1 = x_2 = \ldots = x_n = 3$. In particular, the greatest product of the natural numbers that sum to 2016 is $3^{2016=3}$.

6. The sum of angles of a polygon is $(n \ 2)$ 180 (you may want to show this). Hence, the internal angles of each pentagon and decagon is 108° and 144° respectively. Since the length of the sides of both shapes are 1, to make sure there is no gap between tiles, we must join two corners of the a pentagon to each one corner of the decagon to make $2 \ 108^\circ + 144^\circ = 360^\circ$; This will not work without overlaps.

Senior Questions

1. Let $x = 2^a$