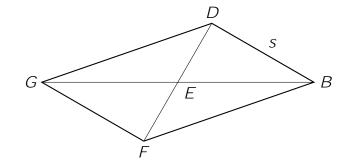
MATHEMATICS ENRICHMENT CLUB. Solution Sheet 15, September 10, 2018

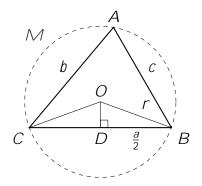
1. If Cog-1 rotates clockwise, Cog-2 must rotate counter clockwise, and so Cog-3 must

- (v) Extend *DE* and *BE*.
- (vi) Using the compasses, nd point F on DE such that EF = DE, and point G on BE such that EG = BE.



Then *DF* and *BG* bisect each other and hence *DBFG* is a parallelogram. Moreover, DF + BG = d, the angle between *DF* and *GB* is , and the length of the side *DB* is *s*. Thus *DBFG* has the required properties.

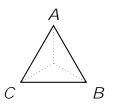
- 4. If a number is written in its prime factorisation $n = p_1^{m_1} p_2^{m_2} \dots p_k^{m_k}$, then for it to be powerful each of the m_i 2 and for it to be a perfect power all $m_i = c$, a constant. Thus for *n* to be powerful but not a perfect power all the m_i must be greater than 2, but not all the same. The smallest then, would be $2^3 \quad 3^2 = 72$.
- 5. Let *O* be the centre of \mathcal{M}_{i} and let *D* be the midpoint of *BC*.



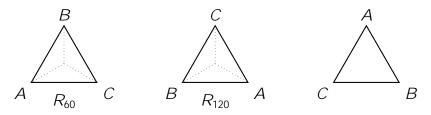
(a-not 81q288 -46.025 cmQ Q q q 1 0 0 1 35.66 22.322 c806051s4.t326.02243 [(3 -22.322 0 Td81 343.6

Senior Questions

1. (a) Consider the following triangle, which has its vertices labelled *A*, *B*, *C* in a clockwise fashion from the top. We will consider this as the initial position of the triangle.



Then there are three rotations (measured in the counter-clockwise direction), which I will designate R_{60} , R_{120} and R_{360} .



Interestingly, there is a subset of the operations that do commute with each other. Can you see which ones they are?

- (c) Obviously, this is R_{360} , the \do nothing" operation. (I could also have called it $R_{0.}$)
- (d) Clearly, R_{360} is it's own inverse, as are the three piping operations | F_{90} , F_{210} and F_{330} . The two other rotations, R_{60} and R_{120} , are inverses of each other.