MATHEMATICS ENRICHMENT CLUB. Solution Sheet 6, June 18, 2018

1. Firstly, we note that $2x + 5y \neq 0$. Then

x + 3y

Х	y	Ζ	x + y 2	X + Z	y + z
				2	2
			2	0	0
1	3	3	0	0	2
3	3	3	2	2	2

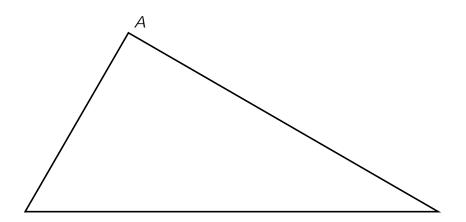
We know from part (a) that squares are either 0 or 1 mod 4, so none of these combinations works.

Without loss of generality, suppose that x is even but both y and z are odd. Then the table is as follows:

Х	у 1	Ζ	<i>x</i> + <i>y</i>	X + Z	<i>Y</i> + <i>Z</i>
0	1	1	1	1	2
0	1	3	1	3	0
0	3	3	3	3	2
2	1	1	3	3	2
2	1	3	3	1	0
2	3	3	1	1	2

Once again, we see that this does not work if two of the integers are odd. Consequently, at most one of the integers is odd. (It can be seen that x; y = 0 and z = 1 or x; y = 2 and $z = 3 \mod 4$, for instance, might work.)

- (c) Try 19, 30 and 6.
- 5. Let KG, LG and GM be perpendiculars from G to AB, AC and BD, respectively. Then 4BKG and 4BGM are two right triangles with a smaller angle and a hypotenuse in common, so 4BKG 4BGM. Thus GK = GM. By a similar argument, it can be shown that GM = GL. Consequently, 4GAK 4GAL, and so GA bisects \BAC , as required.



Senior Questions

- 1. Use mathematical induction.
- 2. Recall that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(2n+1)(n+1)}{6}$. Then $\lim_{n \neq 1} 1^2 + 2^2 + 3^2 + \dots$

But $e^y = \frac{x}{y}$, and so

$$1 = \frac{x(1+y)}{y} \quad \frac{dy}{dx}$$
$$\frac{dy}{dx} = \frac{y}{x(1+y)}$$

And since y = W(x), the result follows.