MATHEMATICS ENRICHMENT CLUB. Solution Sheet 7, June 25, 20[1](#page-0-0)9¹

1. Note that x has greater magnitude than y . Firstly, let's concentrate on positive solutions to the equation. If 2019 = x^2 y^2 , then 2019 = $(x + y)(x - y)$. The factors of 2019 are 1, 3, 673, and 2019. So

Thus the solutions are (1010; 1009), (1010; 1009), (338; 335) and (338; 335), so there are eight solutions altogether.

2. Let O be the centre of the incircle, let the radius of the incircle be r and let D , E and F be the points of tangency between the incircle and the triangle as shown below.

Since OD, OE, and OF are radii to tangents, $\triangle BFO = \triangle CEO = \triangle ODB = 90$. Thus AFOE is a square with side length r. Hence $AE = AF = r$, $EC = b$ r and $FB = c$ r. Furthermore, by RHS, $4EOC$ $4DOC$ and thus $DC = b$ r. Similarly, $BD = c \quad r$. Thus

$$
a = (b \quad r) + (c \quad r)
$$

$$
r = \frac{1}{2}(b + c \quad a)
$$

¹Some problems from UNSW's publication Parabola, and the Tournament of Towns in Toronto

3. A neat trick is to express N as

 \bigcap 1 $\overline{}$ 1 3 1 $(10^{61}$ 1): 333 : : : 333 = [@]999 :_{{2}:999}
^{61 9%} $A =$ 9 3 $\frac{1}{61}$ $\frac{3\theta_{s}}{3}$ $=\frac{2}{3}$ $\frac{2}{3}$ (10⁶² 1). Now Similarly, $M = 666$: $i \div 666$ $\frac{1}{62}$ $\frac{1}{60}$ 2 $(10^{61} \t1)(10^{62} \t1)$ N $M =$ 9 2 $(10^{61} \t1) \t10^{62} \tfrac{2}{2}$ $(10^{61}$ 1) = 9 9 $= 222$: i : 222 000 :₅: 000 222 *: : :* 222 $\frac{1}{60}$ $\frac{2^{0}s}{s}$ $\frac{1}{62}$ $\frac{1}{0}$ $\frac{1}{s}$ $\frac{1}{60}$ $\frac{2^{0}s}{s}$ $= 222$: i : 222 19 777 *: : :* 777 8: $\frac{1}{60}$ $\frac{2^{0}s}{s}$ $\frac{1}{60}$ $\frac{20}{7}$

4. In modular arithmetic, if a $bmod(n)$, then a^x $b^xmod(n)$. Thus we can see that

$$
a \quad 1 \mod (a \quad 1)
$$
\n
$$
a^x \quad 1^x \mod (a \quad 1)
$$
\n
$$
a^x \quad 1^x \mod (a \quad 1)
$$

 $1 \text{mod}(a \quad 1)$

Similarly,

a
$$
amod(a + 1)
$$

\n(1) $mod(a + 1)$
\n a^x (1)^x $mod(a + 1)$
\n(1)^x $mod(a + 1)$ 1 $mod(a + 1)$
\n a

Thus $r_1 + r_2 = a + 1$.

5. We can write $x = n + d$, where n is the integral part of x and d the decimal part. Then $[2x] + [4x] + [6x] + [8x] = 20n + [2d] + [4d] + [6d] + [8d]$. We scan over the range of d; that is $0 < d < 1$ to see what positive integer under 1001 can be expressed in the form of $[2x] + [4x] + [6x] + [8x]$. For example

If we continue with the above calculations, the results are the numbers ending in $3/7/8$ or 9 can not be expressed in the form $[2x] + [4x] + [6x] + [8x]$. This means that, for $n = 0$, we have 0 (in this case we can't actually count this one, as we are looking at positive integers), 1, 2, 4, 5 and 6. For $n = 1$, we have 20, 21, 22, 24, 25 and 26 (6 possibilities). For $n = 2$, we have 40, 41, 42, 24, 45 and 46, and so on. Since we are also counting 1000 itself, there are a total of 300 numbers that can be written this way.

6. Let *d* be the number of kilometres travelled before the tyre switch is made. Then $\frac{a}{x}$ is the proportion of wear on the front tyre before the switch, hence they will travel \hat{a} further 1 $\frac{a}{x}$ $\frac{q}{x}$ y kilometres before the tyres are retired. So the total distance travelled by the font tyre is $d+1-\frac{a}{b}$ $\frac{q}{x}$ y. Similarly, the total distance travelled by the rear tyre is $d + 1 = \frac{a}{b}$ $\frac{d}{y} X$.

Suppose the claim of the advertisement is true, then we must have the following system of inequalities

Rearranging this gives

$$
\begin{array}{ccc}\n d & 1 & \frac{y}{x} & \frac{x}{2} \\
d & 1 & \frac{x}{y} & \frac{y}{2},\n \end{array}
$$

then using the assumption that $x < y$, we have

$$
d \quad \frac{x \, y}{2} \quad 1 \quad \frac{y}{x}
$$

Senior Questions

- 1. Since > 0 , $+ \frac{1}{2} = \frac{2}{1} + \frac{1}{2} + 2$ 2. Similarly, $+ \frac{1}{2}$ 2. Therefore, if r_1 and r_2 are the roots of f (assuming r_1 r_2 wlog), then r_1 2 and r_2 < 0, so that $r_1r_2 = c$ 3 < 0, which implies $c < 3$. \overline{f} get the lower bound on *c*, we use the quadratic formula 2 $r_1 = (c + 1) + (c + 1)^2$ 4(*c* 3). Solving gives 2 *c*. \overline{p} \overline{p}
- 2. Square both sides of the equation \overline{a} $b =$ \overline{c} and rearranging gives

$$
\frac{D_{\overline{c}}}{C}=\frac{a}{2b} \frac{b^2}{2b}.
$$

Since the RHS of the above equation is rational, p \overline{c} must be rational. Write \overline{p} $\overline{c} = x = y$ where x and y are integers with greatest common multiplier one. Then $c = x^2$ =y², and greatest common multiplier between x^2 and y^2 is one. Since c is an integer, x^2 must be divisible by y^2 , which can only happen if $y^2 = 1$, because the greatest common multiplier between x^2 and y^2 is one. Hence $c = x^2$, so that c is a perfect square. \overline{p} p

If c is a perfect square, then the equation \overline{a} $b =$ \bar{c} implies that a is also a perfect square.

3. Use the method of re ection. Re ect the point B in the line that represents the river bank. This is shown as B^{ℓ} in the diagram below. Then the shortest distance from A to B^{θ} is clearly a straight line. We can use Pythagoras' theorem to show that this is 15 km.

